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  P2P systems pros and cons!
◦  pros: scalability, no single point of failure, etc.!
◦  cons: hard to implement!!
  detect remote peer failure!
  replicate data over multiple peers!
  manage multiple pointers to backup peers!

  Implementing these measures is delicate work 
and troublesome burden for developers!
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Implement a reliable layer for  
fault tolerant P2P systems 



  Virtual Peer (VP)!
◦  Group multiple unstable peers to form a stable!

virtual peer (redundant system)!
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  A virtual peer consists of multiple member peers!
  A P2P application runs on a virtual peer as a !

virtual process!
  Failed member peer is replaced with another (non-

failed) one!
  A virtual process is fault-tolerant!
◦  It does not fail even if some part of the member peers fail!
◦  Application developers do not need to take care of peer 

failure!
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1.  How to achieve fault-tolerance of a virtual 
process?!

2.  How to ensure identical message sequences?!
3.  How to handle peer failure?!
4.  How to communicate with a remote virtual 

peer?!
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  The state of a virtual process must be replicated 
over multiple member peers!

  Each member peer simultaneously and 
redundantly executes the same application, as a 
process!

  To maintain the state of each process identical:!
◦  A process must be a state machine!
  its state must be changed only by external messages!
◦  Also, each process receives the identical message 

sequence (aka atomic broadcasting)!

  Merit: application programs can be quite simple!
◦  Just process the received messages in order!
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  To implement atomic broadcast, the Paxos 
consensus algorithm is used!

  Paxos!
◦  Distributed algorithm to form a consensus between multiple 

nodes (peers) on an unreliable network!
◦  Only a dedicated leader peer can propose values!

  The leader is elected by using a leader election algorithm!

◦  All peers eventually choose an identical value!
◦  Majority agreement is required!

  All the member peers in VP execute Paxos algorithm!
◦  External messages sent to a VP are processed by the Paxos 

algorithm to be identically ordered!
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  Failed member peer must be replaced to keep 
the number of the peers constant!
◦  Otherwise the VP eventually will not be functional !

because majority agreement is required by Paxos!

  All the member peers must have a consistent 
view of membership configuration!

  Paxos is also used to update a member 
configuration without losing consistency!
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  The leader peer chooses 
another peer p from the 
P2P network!
  If leader peer fails, new 

leader is elected!
  The leader peer 

proposes a peer 
configuration change!

  p executes the same 
process!
  The state must be same!
  Process migration technique 

is used!
  Note that the majority 

of member peers must 
be alive during this 
replacing sequence!
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  How to deliver messages to VPs!
◦  Member peers are not fixed!!

  Solution: Use ALM (Application Level Multicast)!
◦  Each VP has a dedicated ALM group!
  All member peers join in!
◦  Messages sent to a VP are multicast to the group!
◦  We have implemented ALM by using range queries on 

Skip Graph!
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  A platform for!
implementing P2P services!
 Implemented in Java!

  Each peer executes a !
musasabi instance!

  An application program !
written in Java can be !
executed on musasabi !

  Java sandbox mechanism is used to protect a 
local node!

  musasabi uses PIAX for P2P networking  !
◦  PIAX provides Skip Graph, ALM (over Skip Graph) etc.!
◦  http://www.piax.org/en/!
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  musasabi supports strong mobility!
 Transfer the program, data and execution context (thread 

stack and program counter)!
 Not easy in Java (not supported by the standard JVMs)!
 Some implementations use customized JVMs or native 

libraries (not portable)!
  Not suitable for P2P systems!!

  Implementation of strong mobility in musasabi!
 Use Apache Javaflow library!
  Javaflow allows to capture and resume the execution context!
  Captured contexts can be transferred to a remote node!!
  Javaflow uses byte code translation technique and thus 

works on the standard JVMs!

14/Oct/2009 AP2PS2009 12 



A VP fails if a majority of member peers fails!
  Maximum time to!

replace a failed peer!
is 60sec!

  Each peer fails !
independently!

  Intervals of peer!
failure are !
exponentially!
distributed!

  Peer failure rate:!
50% of peers fail!
in an hour!
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Relation between MTTF (Mean Time To Failure) of a VP and # of its 
member peer is analyzed!

  Each peer fails !
independently!

  Intervals of peer!
failure are !
exponentially!
distributed!

  Maximum time to!
replace a failed peer !
is 60sec!

  Peer failure rate is!
varied (x-axis)!
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Even in excessive peer failure  
environment, VP is stable if it  

has enough member peers
 frequently! peer fails! less!
frequently!



  We proposed a novel method to construct a 
stable virtual peer from multiple unstable peers!
◦  Integrate the Paxos consensus algorithm, process 

migration technique and ALM!
◦  An application running on a VP virtually does not fail!
◦  Application programs can be quite simple!

  The method can be used for reducing 
development costs, and for improving stability, of 
P2P systems!

  Future work!
◦  Improve the method for choosing good member peers!
◦  Investigate and improve security issues of VPs!
◦  Evaluate the method on the Internet!

14/Oct/2009 AP2PS2009 15 



14/Oct/2009 AP2PS2009 16 

This research was partially supported by !
National Institute of Information and Communication Technology 

(NICT), Japan



