
Toward Fault-tolerant P2P Systems:
Constructing a Stable Virtual Peer
from Multiple Unstable Peers!

Kota Abe, Tatsuya Ueda (Presenter), !
Masanori Shikano, Hayato Ishibashi and!

Toshio Matsuura!
Osaka City University!

14/Oct/2009 AP2PS2009

14/Oct/2009 AP2PS2009 1

  P2P systems pros and cons!
◦  pros: scalability, no single point of failure, etc.!
◦  cons: hard to implement!!
  detect remote peer failure!
  replicate data over multiple peers!
  manage multiple pointers to backup peers!

  Implementing these measures is delicate work
and troublesome burden for developers!

14/Oct/2009 AP2PS2009 2

Implement a reliable layer for  
fault tolerant P2P systems

  Virtual Peer (VP)!
◦  Group multiple unstable peers to form a stable!

virtual peer (redundant system)!

14/Oct/2009 AP2PS2009 3

Virtual Peer
(VP)

Virtual Peer
(VP)

  A virtual peer consists of multiple member peers!
  A P2P application runs on a virtual peer as a !

virtual process!
  Failed member peer is replaced with another (non-

failed) one!
  A virtual process is fault-tolerant!
◦  It does not fail even if some part of the member peers fail!
◦  Application developers do not need to take care of peer

failure!

14/Oct/2009 AP2PS2009 4

Virtual Peer

Virtual Process
member!
peer1!

member!
peer2!

member!
peer3!

1.  How to achieve fault-tolerance of a virtual
process?!

2.  How to ensure identical message sequences?!
3.  How to handle peer failure?!
4.  How to communicate with a remote virtual

peer?!

AP2PS2009 5

  The state of a virtual process must be replicated
over multiple member peers!

  Each member peer simultaneously and
redundantly executes the same application, as a
process!

  To maintain the state of each process identical:!
◦  A process must be a state machine!
  its state must be changed only by external messages!
◦  Also, each process receives the identical message

sequence (aka atomic broadcasting)!

  Merit: application programs can be quite simple!
◦  Just process the received messages in order!

14/Oct/2009 AP2PS2009 6

  To implement atomic broadcast, the Paxos
consensus algorithm is used!

  Paxos!
◦  Distributed algorithm to form a consensus between multiple

nodes (peers) on an unreliable network!
◦  Only a dedicated leader peer can propose values!

  The leader is elected by using a leader election algorithm!

◦  All peers eventually choose an identical value!
◦  Majority agreement is required!

  All the member peers in VP execute Paxos algorithm!
◦  External messages sent to a VP are processed by the Paxos

algorithm to be identically ordered!

14/Oct/2009 AP2PS2009 7

  Failed member peer must be replaced to keep
the number of the peers constant!
◦  Otherwise the VP eventually will not be functional !

because majority agreement is required by Paxos!

  All the member peers must have a consistent
view of membership configuration!

  Paxos is also used to update a member
configuration without losing consistency!

14/Oct/2009 AP2PS2009 8

choose
randomly

Peer p

  The leader peer chooses
another peer p from the
P2P network!
  If leader peer fails, new

leader is elected!
  The leader peer

proposes a peer
configuration change!

  p executes the same
process!
  The state must be same!
  Process migration technique

is used!
  Note that the majority

of member peers must
be alive during this
replacing sequence!

14/Oct/2009 AP2PS2009 9

Virtual Peer

fail

Keep Alive

Process migration (replication)

Timeout

Paxos

Virtual Peer

Member
Peer

Member
Peer

Leader
Peer

Process
 Process
 Process
Process

  How to deliver messages to VPs!
◦  Member peers are not fixed!!

  Solution: Use ALM (Application Level Multicast)!
◦  Each VP has a dedicated ALM group!
  All member peers join in!
◦  Messages sent to a VP are multicast to the group!
◦  We have implemented ALM by using range queries on

Skip Graph!

14/Oct/2009 AP2PS2009 10

ALM group

Virtual Peer

  A platform for!
implementing P2P services!
 Implemented in Java!

  Each peer executes a !
musasabi instance!

  An application program !
written in Java can be !
executed on musasabi !

  Java sandbox mechanism is used to protect a
local node!

  musasabi uses PIAX for P2P networking !
◦  PIAX provides Skip Graph, ALM (over Skip Graph) etc.!
◦  http://www.piax.org/en/!

14/Oct/2009 AP2PS2009 11

Configuration of musasabi

Base Operating System 
Windows, MacOS X, Linux …

Java VM

musasabi
PIAX

Process 1
 Process 2
 Process 3

  musasabi supports strong mobility!
 Transfer the program, data and execution context (thread

stack and program counter)!
 Not easy in Java (not supported by the standard JVMs)!
 Some implementations use customized JVMs or native

libraries (not portable)!
  Not suitable for P2P systems!!

  Implementation of strong mobility in musasabi!
 Use Apache Javaflow library!
  Javaflow allows to capture and resume the execution context!
  Captured contexts can be transferred to a remote node!!
  Javaflow uses byte code translation technique and thus

works on the standard JVMs!

14/Oct/2009 AP2PS2009 12

A VP fails if a majority of member peers fails!
  Maximum time to!

replace a failed peer!
is 60sec!

  Each peer fails !
independently!

  Intervals of peer!
failure are !
exponentially!
distributed!

  Peer failure rate:!
50% of peers fail!
in an hour!

14/Oct/2009 13

After 1 year

R
el

ia
bi

lit
y

of
 V

P

Elapsed time (days)

7 peers

3peers

5 peers

7 peers are enough in this case

choose
randomly

Peer p

Virtual Peer

fail

Keep Alive

Process migration (replication)

Timeout

Paxos

Virtual Peer

Member
Peer

Member
Peer

Leader
Peer

Process
 Process
 Process

Process

60sec

Relation between MTTF (Mean Time To Failure) of a VP and # of its
member peer is analyzed!

  Each peer fails !
independently!

  Intervals of peer!
failure are !
exponentially!
distributed!

  Maximum time to!
replace a failed peer !
is 60sec!

  Peer failure rate is!
varied (x-axis)!

14/Oct/2009 AP2PS2009 14

M
TT

F
of

 V
P

(y
ea

r)

Duration of 50% of the peers fail (minutes)

9 peers

5 peers

7 peers

Even in excessive peer failure  
environment, VP is stable if it  

has enough member peers
 frequently! peer fails! less!
frequently!

  We proposed a novel method to construct a
stable virtual peer from multiple unstable peers!
◦  Integrate the Paxos consensus algorithm, process

migration technique and ALM!
◦  An application running on a VP virtually does not fail!
◦  Application programs can be quite simple!

  The method can be used for reducing
development costs, and for improving stability, of
P2P systems!

  Future work!
◦  Improve the method for choosing good member peers!
◦  Investigate and improve security issues of VPs!
◦  Evaluate the method on the Internet!

14/Oct/2009 AP2PS2009 15

14/Oct/2009 AP2PS2009 16

This research was partially supported by !
National Institute of Information and Communication Technology

(NICT), Japan

